Rogers-Ramanujan type identities for rank two partial Nahm sums
主 讲 人 :王六权 教授
活动时间:12月04日11时00分
地 点 :#腾讯会议:583-415-920
讲座内容:
Let $A$ be a $r\times r$ rational nonzero symmetric matrix, $B$ a rational column vector, $C$ a rational scalar. For any integer lattice $L$ and vector $v$ of $\mathbb{Z}^r$, we define Nahm sum on the lattice coset $v+L\in \mathbb{Z}^r/L$:
\begin{align*}\label{eq-lattice-sum}
f_{A,B,C,v+L}(q):=\sum_{n=(n_1,\dots,n_r)^\mathrm{T} \in v+L} \frac{q^{\frac{1}{2}n^\mathrm{T} An+n^\mathrm{T} B+C}}{(q;q)_{n_1}\cdots (q;q)_{n_r}}.
\end{align*}
If $L$ is a full rank lattice and a proper subset of $\mathbb{Z}^r$, then we call $f_{A,B,C,v+L}(q)$ a rank $r$ partial Nahm sum. When the rank $r=1$, we find eight modular partial Nahm sums using some known identities. When the rank $r=2$ and $L$ is one of the lattices $\mathbb{Z}(2,0)+\mathbb{Z}(0,1)$, $\mathbb{Z}(1,0)+\mathbb{Z}(0,2)$ or $\mathbb{Z}(2,0)+\mathbb{Z}(0,2)$, we find 14 types of symmetric matrices $A$ such that there exist vectors $B,v$ and scalars $C$ so that the partial Nahm sum $f_{A,B,C,v+L}(q)$ is modular. We establish Rogers--Ramanujan type identities for the corresponding partial Nahm sums which prove their modularity. In particular, for two mod 10 identities we employ a transformation formula involving two Bailey pairs to transform the partial Nahm sums to some Hecke type series, and then we convert the series to the desired infinite products.
This talk is mainly based on joint works with Wentao Zeng and Changsong Shi.
主讲人介绍:
王六权,武汉大学数学与统计学院教授,主要从事组合数学与数论领域的研究,研究课题多集中在q-级数、整数分拆、特殊函数、模形式理论等方面。迄今在《Advances in Mathematics》、 《Transactions of the American Mathematical Society》、《Journal of Combinatorial Theory Series A》、《Advances in Applied Mathematics》、《Journal of Number Theory》等期刊上发表学术论文50多篇,先后主持国家自然科学基金青年基金、面上项目、国家重点研发计划青年科学家项目各一项。
